题意
$n$ 个数,每个数 $a_i$ ,选 $k$ 个数,一个选取方案的值是异或和。求所有选取方案值的和。
$n\leq10^5,a_i<2^{31}$ 。
题解
加法和异或本质相同。
考虑每一位的贡献,简单组合计数。
代码
const int N = 3e5 + 5, mod = 998244353;
inline ll Read() {
ll x = 0, f = 1;
char c = getchar();
while (c != '-' && (c < '0' || c > '9')) c = getchar();
if (c == '-') f = -f, c = getchar();
while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0', c = getchar();
return x * f;
}
namespace Main {
int n, m;
ll a[N], frac[N], inv[N], ans;
ll qpow (ll a, ll b) {
ll ans = 1;
for (; b; b >>= 1, a = 1ll * a * a % mod)
if (b & 1) ans = 1ll * ans * a % mod;
return ans;
}
ll C (ll n, ll m) {
if (m > n) return 0;
return 1ll * frac[n] * inv[n - m] % mod * inv[m] % mod;
}
int main () {
n = Read(), m = Read();
for (int i = 1; i <= n; i++) a[i] = Read();
frac[0] = 1;
for (int i = 1; i <= n; i++) frac[i] = 1ll * frac[i - 1] * i % mod;
inv[n] = qpow(frac[n], mod - 2);
for (int i = n; i; i--) inv[i - 1] = 1ll * inv[i] * i % mod;
for (int j = 0; j < 31; j++) {
int cnt = 0;
for (int i = 1; i <= n; i++) cnt += (a[i] >> j) & 1;
for (int i = max(m - (n - cnt), 0); i <= min(cnt, m); i++)
if (i & 1) ans = (ans + (1ll * C(cnt, i) * C(n - cnt, m - i) % mod) * qpow(2, j) % mod) % mod;
}
printf ("%lld\n", ans);
return 0;
}
}
int main () {
freopen("card.in", "r", stdin);
freopen("card.out", "w", stdout);
Main::main();
return 0;
}
EOF