题目大意
有 $n$ 个点,它们的位置分别在 $x_i$ ,它们有值 $a_i$ 。现在给 $T$ 秒钟时间,要求选定的一个 $i$ 从它出发,在这 $T$ 秒内可以花 $1$ 秒时间移动, $0$ 秒时间拿取某个点的 $1$ ( $a_j\leftarrow a_j-1$ )、放在某个点( $a_j\leftarrow a_j+1$ )并且手里最多只有 $1$ ,求选择的点 $i$ 在 $T$ 秒后最大能有多少。
$n\le5\times10^5,T\le10^{18}$ 。
题解
即求每个点前 $k$ 近的左右端点。用单调队列的思想做。
代码
const int N = 5e5 + 5;
inline ll Read() {
ll x = 0, f = 1;
char c = getchar();
while (c != '-' && (c < '0' || c > '9')) c = getchar();
if (c == '-') f = -f, c = getchar();
while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0', c = getchar();
return x * f;
}
namespace Main {
int n;
ll m;
ll x[N], a[N];
ll sum[N];
bool check(ll mid) {
int l = 1, r = n + 1, lx = 0, rx = 0;
ll t = 0, tot = 0;
for (int i = 1; i <= n; i++)
if (tot + a[i] <= mid) {
tot += a[i];
t += 1ll * (x[i] - x[1]) * a[i];
} else {
r = i;
rx = mid - tot;
t += 1ll * (x[i] - x[1]) * rx;
break;
}
if (t <= m) return 1;
for (int i = 2; i <= n; i++) {
t -= (sum[r - 1] - sum[i - 1] + rx) * (x[i] - x[i-1]);
t += (sum[i - 1] - sum[l - 1] - lx) * (x[i] - x[i-1]);
while (r <= n && x[r] - x[i] <= x[i] - x[l]) {
int g = min(a[l] - lx, a[r] - rx);
lx += g, rx += g;
t += ((x[r] - x[i]) - (x[i] - x[l])) * g;
if (a[l] == lx) lx = 0, l++;
if (a[r] == rx) rx = 0, r++;
}
if (t <= m) return 1;
}
return 0;
}
int main () {
n = Read(), m = Read() / 2;
for (int i = 1; i <= n; i++) x[i] = Read();
for (int i = 1; i <= n; i++) {
a[i] = Read();
sum[i] = a[i] + sum[i - 1];
}
sum[n + 1] = sum[n] + 1145141919;
ll l = 1, r = sum[n], ans;
while (l <= r) {
ll mid = (l + r) >> 1;
if (check(mid)) l = (ans = mid) + 1;
else r = mid - 1;
}
printf ("%lld\n", ans);
return 0;
}
}
int main () {
freopen("block.in", "r", stdin);
freopen("block.out", "w", stdout);
Main::main();
return 0;
}