之前竟然把这个落了。
高斯-约旦消元
$$A^{-1}\times [AI]=[IA^{-1}] $$
把 $[AI]$ 左半边消成单位矩阵即可。
const int N = 410, mod = 1e9 + 7;
inline ll Read() {
ll x = 0, f = 1;
char c = getchar();
while (c != '-' && (c < '0' || c > '9')) c = getchar();
if (c == '-') f = -f, c = getchar();
while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0', c = getchar();
return x * f;
}
namespace Main {
int n;
ll a[N][N << 1];
ll qpow (ll a, ll b) {
ll ans = 1ll;
for (; b; b >>= 1, a = a * a % mod)
if (b & 1) ans = ans * a % mod;
return ans;
}
int main () {
n = Read();
for (int i = 1; i <= n; a[i][i + n] = 1, i++)
for (int j = 1; j <= n; j++) a[i][j] = Read();
for (int i = 1; i <= n; i++) {
int mxi = i;
for (int j = i + 1; j <= n; j++)
if (a[j][i] > a[mxi][i]) mxi = j;
if (mxi != i) swap(a[i], a[mxi]);
if (!a[i][i]) { puts("No Solution"); return 0; }
int inv = qpow(a[i][i], mod - 2);
for (int k = 1; k <= n; k++) {
if (k == i) continue;
int p = a[k][i] * inv % mod;
for (int j = i; j <= (n << 1); j++)
a[k][j] = ((a[k][j] - p * a[i][j]) % mod + mod) % mod;
}
for (int j = 1; j <= (n << 1); j++) a[i][j] = a[i][j] * inv % mod;
}
for (int i = 1; i <= n; i++, puts(""))
for (int j = n + 1; j <= (n << 1); j++) printf ("%lld ", a[i][j]);
return 0;
}
}
int main () {
// freopen(".in", "r", stdin);
// freopen(".out", "w", stdout);
Main::main();
return 0;
}
EOF