题意
给定 $f_i,p$ ,求 $x$ 使得
$$\left\{\begin{matrix} x^i & \equiv & f_{a_i} \pmod{p}\\ & \vdots & \end{matrix}\right.$$
其中 $a_i$ 是一个位置的排列。
$n\leq2\times10^5,x< p$ 。
题解
注意到解一定在 $f_i$ 中。就用等比数列求和一个一个判。
代码
const int N = 2e5;
inline ll Read() {
ll x = 0, f = 1;
char c = getchar();
while (c != '-' && (c < '0' || c > '9')) c = getchar();
if (c == '-') f = -f, c = getchar();
while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0', c = getchar();
return x * f;
}
namespace Main {
int n, mod;
ll a[N], sum;
ll qpow (ll a, ll b) {
ll ans = 1;
for (; b; b >>= 1, a = a * a % mod)
if (b & 1) ans = ans * a % mod;
return ans;
}
int main () {
n = Read(), mod = Read();
for (int i = 1; i <= n; i++) (sum += (a[i] = Read())) %= mod;
for (int i = 1; i <= n; i++) {
if (a[i] == 1) continue;
ll fsum = (qpow (a[i], n) - 1) * qpow (a[i] - 1, mod - 2) % mod;
if (fsum == sum) {
printf ("%lld\n", a[i]);
return 0;
}
}
return 0;
}
}
int main () {
// freopen(".in", "r", stdin);
// freopen(".out", "w", stdout);
Main::main();
return 0;
}