RBS
题面
定义括号序列为只包括 $\texttt{(}$ 和 $\texttt{)}$ 的字符串。一个匹配的括号序列(简记为 RBS)满足,可以在其中加入 $1$ 和 $+$ ,将其转化为合法的代数式,例如:
- $\texttt{()()}$ 和 $\texttt{(())}$ 是匹配的
- $\texttt{)(}$ 和 $\texttt{(}$ 和 $\texttt{)}$ 不是。
将两个字符串拼接在一起简记为 $x+y$ 。例如, $\texttt{()()}+\texttt{)(}=\texttt{()())(}$ 。
给定 $n$ 个括号序列 $s_1\sim s_n$ ,你可以将他们任意重新排序,要求使得最终排序后的字符串满足 $s_1+\dots+s_n$ 的 RBS 前缀个数最多。
$1\le n\le 20$
题解
状压 $\mathcal{O}(n2^n)$ 。
代码
const int N = 25, M = 4e5 + 5, tN = 1048580;
inline ll Read() {
ll x = 0, f = 1;
char c = getchar();
while (c != '-' && (c < '0' || c > '9')) c = getchar();
if (c == '-') f = -f, c = getchar();
while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0', c = getchar();
return x * f;
}
namespace Main {
int n, ans;
int ns[N], sc[N][M << 1], ss[N], sn[N];
char s[M];
int f[tN], sum[tN];
int main () {
n = Read();
for (int i = 1; i <= n; i++) {
scanf ("%s", s + 1);
ns[i] = strlen(s + 1);
for (int j = 1; j <= ns[i]; j++) {
ss[i] += (s[j] == '('? 1: -1);
sn[i] = min(ss[i], sn[i]);
if(sn[i] >= ss[i])sc[i][-ss[i]] ++;
}
}
memset (f, -0x3f3f3f3f, sizeof f);
f[0] = 0;
for (int j = 0; j < (1 << n); j++) {
for (int i = 1; i <= n; i++) {
if ((j >> i - 1) & 1) continue;
if (sum[j] + sn[i] < 0) {
ans = max (ans, f[j] + sc[i][sum[j]]);
sum[j | (1 << i - 1)] = sum[j] + ss[i];
} else {
f[j | (1 << i - 1)] = max(f[j | (1 << i - 1)], f[j] + sc[i][sum[j]]);
sum[j | (1 << i - 1)] = sum[j] + ss[i];
}
}
ans = max(ans, f[j]);
}
printf ("%d\n", ans);
return 0;
}
}
int main () {
freopen("seq.in", "r", stdin);
freopen("seq.out", "w", stdout);
Main::main();
return 0;
}